Abstract

One of the most fundamental difference between classical and quantum mechanics is observed in the particle tunneling through a localized potential: the former predicts a discontinuous transmission coefficient (T) as a function in incident velocity between one (complete penetration) and zero (complete reflection); while in the latter T always changes smoothly with a wave nature. Here we report a systematic study of the quantum tunneling property for a bright soliton, which behaves as a classical particle (wave) in the limit of small (large) incident velocity. In the intermediate regime, the classical and quantum properties are combined via a finite (but not full) discontinuity in the tunneling transmission coefficient. We demonstrate that the formation of a localized bound state is essential to describe such inelastic collisions, showing a nontrivial nonlinear effect on the quantum transportation of a bright soliton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.