Abstract
In this work, the NBT ceramics are successfully flash sintered at a direct current 30 mA/mm 2 for 30 s under different initial electric field. Subsequently, the actual temperature of samples is estimated by blackbody radiation theory under different conditions. The calculation results show that the sample temperature is close to the densification temperature of NBT ceramics used in conventional method. The rapid densification mechanism is discussed by wetting of local contact particles due to the asymmetrical Joule heating. In particular, we analyzed the particle transport mode during flash sintering in terms of particle diffusion. It is believed that the transform in the particles transport mode from solid diffusion to flow mass transfer accelerated the particles diffusion rate, which ensure the particle rearrangement and achieve the local shrinkage of particles in a short period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.