Abstract

The particle confinement time of ohmic double-null discharges in Tokamak de Varennes (TdeV) is determined by two different techniques, the conventional method and a new technique based on the temporal decay of the total core population following the injection of a gas puff. Both methods show a confinement time increasing with density up to a maximum of 13 ms at and decreasing at larger densities, with very little dependence on plasma current. Particle transport is analysed using fast gas puffing and Abel inversion of the seven-chord submillimetre (SMM) interferometer together with the source profiles determined by measurements. The incremental transport coefficients are obtained by testing the standard form of the particle flux function against the data during the transitory period towards equilibrium. Both perturbed diffusion and convection coefficients are found to vary approximately as the inverse of the density and almost proportionally to the plasma current. The equilibrium transport coefficients are then deduced from the experimental equilibrium density profiles and the measured incremental coefficients using a transport model developed from the data. The model is finally used to predict confinement times to be compared with experiment. The effect of divertor plate biasing on transport is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.