Abstract
The problem addressed in this paper concerns the ensembling generation for evidential k-nearest-neighbour classifier. An efficient method based on particle swarm optimization (PSO) is here proposed. We improve the performance of the evidential k-nearest-neighbour (EkNN) classifier using a random subspace based ensembling method. Given a set of random subspace EkNN classifier, a PSO is used for obtaining the best parameters of the set of evidential k-nearest-neighbour classifiers, finally these classifiers are combined by the “vote rule”. The performance improvement with respect to the state-of-the-art approaches is validated through experiments with several benchmark datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.