Abstract
The aim of the present study was to elucidate thedistribution of particulate polycyclic aromatichydrocarbons (PAH) in the air of a remote Norwayspruce (Picea abies (L.) karst.) stand.The study encompassed a total of twenty differentcongeners. Particles in ambient air were alternativelycollected by two different Berner cascade impactors atthe field site in Northern Bavaria over a 14-weeksperiod from the end of April through to the end ofJuly 1994 and subsequently analyzed for their PAHcontent. The concentrations of total suspendedparticulate matter (TSP) ranged from 9–31 μg m-3,suggesting that the field site is an area with a lowlevel of airborne particles. There was a negativerelationship of total particle concentrations with theamount of canopy precipitation due to particle washout at precipitation events. The distribution of theparticle masses on the different size fractions witha maximum in the 1-μm range is typical for remoteareas and indicates a medium-range transport. Theaerosol-bound PAH load decreased from spring sampleswith 2–4 ng m-3 to values <1 ng m-3 in the summersamples. Concurrently, the proportion of low molecularweight congeners in the total PAH load declined.Frequently, the highest PAH concentrations (referringto the air) were found in the 0.1–3 μm sizeseparates (accumulation mode). The results suggestthat apart from PAH input to the soil with litter, dryand wet deposition of aerosol particles is animportant pathway of PAH contamination of acid forestsoils in the Fichtelgebirge mountain range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.