Abstract

Particle size distribution (PSD) is an often used parameter to describe and quantify fragmentation of deformed rock. Our analyses of shock deformed sandstone show that dynamic fragmentation influences the PSD, expressed as fractal dimension (D-value). Image analysis was used to derive fractal dimensions from a hypervelocity impact cratering experiment (2.5 mm steel sphere, 4.8 km/s) and a planar shock recovery experiment (2.5 GPa). The D-values in the cratering experiment decrease from 1.74 at the crater floor to 0.84 at a distance of 7.2 mm to the crater floor. The D-values found in this experiment are closely related to the microstructural features found at distinct distances from the crater floor. The obtained values are in good agreement with the D-values reported for fault zones, impact sites and deformation experiments. The D-value measured in the shock recovery experiment is 2.42. Such high D-values were usually attributed to abrasive processes related to high strain. Since the strain in our experiment is only ∼23% we suggest that at highly dynamic deformation very high d-values can be reached at small strain. To quantify this, numerical impact modelling has been used to estimate strain rates for the impact experiment. This is related to the activation of more inherent flaws and fracture bifurcation at very high strain rates ∼>102 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.