Abstract
PLGA multiphase microspheres were prepared by the multiple emulsion solvent evaporation method using acetonitrile as the polymer solvent and mineral oil as the evaporation medium. The preparation process was further developed in the present study to reduce the particle size and to increase the loading capacity of brilliant blue, bovine serum albumin (BSA) and tumour necrosis factor-alpha (TNF-alpha) which were used as water soluble model drug substances. Sorbitan sesqui-oleate (SO-15EX), present at the 1% w/w level in the evaporation medium, prevented agglomeration of the microspheres containing a solid-in-oil (S/O) suspension as the core phase. This S/O suspension core provided significantly higher loading efficiency of the proteins to the W/O emulsion core. The W/O emulsion system resulted in agglomeration of the protein-loaded microspheres and the loading efficiency decreased significantly. When brilliant blue was included as the model compound, the loading efficiencies were not influenced by the core type. Heavy mineral oil was employed to stabilize the dispersed unhardened microspheres rather than light mineral oil that was reported previously. This anhydrous emulsion system employing the S/O suspension core and containing a dispersion of TNF-alpha enabled the encapsulation of this protein without loss of activity. It was concluded that the anhydrous emulsion system is asuitable approach toprepare multiple microspheres as an alternative to the W/O emulsion system, especially when solvent sensitive proteins are incorporated into the microspheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.