Abstract

The explosive dispersal of a layer of solid particles surrounding a spherical high explosive charge generates a turbulent, multiphase flow. The shock-compacted particle layer typically fractures into discrete fragments which move radially outwards on ballistic trajectories. The fragments shed particles in their wakes forming jet-like structures. The tendency to form jets depends on the mass-ratio of the particles to explosive and the type of particles. Brittle or soft, ductile particles are more susceptible to forming jets during compaction and dispersal, whereas particles that are comprised of material with moderate hardness, high compressive strength and high toughness are much less prone to forming jets. Experiments have been carried out to determine the degree of particle segregation that occurs during the explosive dispersal of a uniform, binary mixture containing both “jetting” (silicon carbide) and “non-jetting” (steel) particles with various mass fractions of each particle type. During the dispersal of mixtures that contain predominantly non-jetting (steel) particles, the steel particles form a stable layer whereas the jetting (silicon carbide) particles rapidly segregate and form jets which are confined within the shell of steel particles. As the fraction of silicon carbide particles increases, the jet structures dominate the particle motion and the steel particles are entrained into the jet structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.