Abstract

The normal stress exerted by particles in a sheared suspension is measured by analogy with a method used to measure osmotic pressure in solutions. Particles in a liquid are confined by a fine screen to a gap between two vertical concentric cylinders, the inner of which rotates. Pressure in the liquid is sensed either by a manometer or by a pressure transducer across the screen. The particles are large enough so that Brownian motion and equilibrium osmotic pressure are vanishingly small. The measured pressure yields the shear-induced particle pressure Pi, the nonequilibrium continuation of equilibrium osmotic pressure. For volume fractions 0.3< or =varphi< or =0.5, Pi is strongly dependent on varphi, and linear in shear rate. Comparisons of the measured particle pressure with modeling and simulation show good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.