Abstract

To investigate the mechanism of action of ternary components within dry powder aerosols. Ternary interactive mixtures were prepared containing salbutamol sulphate (SS), coarse lactose carriers and either micronized lactose (ML) or micronized glucose (MG). In vitro drug and excipient aerosol deposition was performed using a twin-stage impinger (TSI) at 60 L/min with a Rotahaler device. Adhesional properties of the lactose carrier were examined using an atomic force microscope (AFM) colloidal probe technique. The fine particle fraction (FPF) from ternary mixtures were dependent upon carrier type (p < 0.001), ternary concentration (p < 0.001) and ternary component type (p < 0.05). Ternary mixtures produced higher FPF than binary mixtures, except those containing Superfine (SF), which was attributed to the high proportion of intrinsic fine carrier particles. The higher FPF obtained from ternary mixtures was independent of the mixing order (p = 0.08). Increased adhesion force was observed on the carrier surface following the addition of ternary components (p < 0.001). The results confirm that ternary components increase aerosol deposition of powder mixtures. Some results were not entirely consistent with the saturation of active site theory and a hypothesis involving competitive and multilayer adhesion was proposed and requires further testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.