Abstract

The extracellular matrix (ECM) provides tissues with the mechanical support, space, and bioactive signals needed for homeostasis or tissue repair after wounding or disease. Hydrogel based scaffolds that can match the bulk mechanical properties of the target tissue have been extensively explored as ECM mimics. Although the addition of microporosity to hydrogel scaffolds has been shown to enhance cell/tissue-material integration, the introduction of microporosity often involves harsh chemical methods, which limit bioactive signal incorporation and injectability. Particle hydrogels are an emerging platform to generate in situ forming microporous scaffolds. In this approach, μgel particles are annealed to each other to form a bulk scaffold that is porous because of the void space left by the packed microgels. In the present work, we discuss the formation of hyaluronic acid-based microfluidic generated microgels for the generation of a completely biodegradable material. The generation of particle scaffolds requires two orthogonal chemistries, one for microgel generation and one for microgel annealing and scaffold formation. Here we explore three orthogonal annealing chemistries based on an enzymatic reaction, light based radical polymerization, and amine/carboxylic acid based cross-linking to demonstrate the versatility of our particle hydrogels and explore potential physical differences between the approaches. We explore the connectivity of the generated pores, the pore area/void fraction of the resulting scaffold, the mechanical properties of the scaffold, and cell spreading within scaffolds formed with the three different annealing mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.