Abstract
A mixing model has been developed to simulate the particle residence time distribution (RTD) in a circulating fluidized bed absorber (CFBA). Also, a gas/solid reaction model for sulfur dioxide (SO 2) removal by lime has been developed. For the reaction model that considers RTD distribution inside the core and annulus regions of a CFBA, a macrochemical reaction can be simulated based on microchemical reaction dynamics. The presented model can predict SO 2 and lime concentration distributions inside the CFBA, and give the amount of lime needed to remove a given percentage of SO 2. It is found that SO 2 concentration decreases with the increase of CFBA distance from the bottom in the core region. However, lime concentration exhibits a very slight variation in the core region. This means that lime is efficiently utilized to remove SO 2. The model also predicts that SO 2 partial pressure at the exit of the CFBA decreases with the increase in the percentage of fresh lime injected in the CFBA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.