Abstract

A model based on a classical dynamical calculation of the impact of a 600-eV Ar+ ion into a single crystal has been developed to the point where it compares quantitatively to a wide variety of experimental observables. Here, we make direct comparisons between experiment and theory for relative sputtering yields, energy and angular distributions of the ejected atoms, and multimer yields. The model is also extended from clean single-crystal surfaces to include adsorbate atoms and molecules. These results are compared to experimental SIMS studies aimed at sorting out the structure-sensitive factors that contribute to the cluster ion yield. In oxygen chemisorption on Ni(100), for example, the O2−/O− yield is four times larger for a c (2×2) coverage than for a p (2×2) coverage, a value also predicted by the calculations. In molecular CO chemisorption, the ejection of CO is found to occur molecularly in both the experiments and in the calculations. In comparison to the calculations, a high value of Ni2CO+/NiCO+ is consistent with a bridge-bonded CO structure at low coverage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.