Abstract
Aluminum–boron carbide particle reinforced composite is an advanced material which can be used in applications such as neutron-shielding components, aircraft, and aerospace structures. In the microstructural characterization of an Al–7%Si–10%B4C die casting, attention is particularly focused on particle distribution and interface reaction products between B4C particles and the aluminum matrix. The quantitative analysis results show that, in a cross-section of the cast part, more particles concentrate in the center and fewer particles are present in the wall regions. Moreover, some particle segregation bands have been observed. The mechanisms of the particle migration are proposed to describe the phenomenon. However, the average particle fraction in any cross-section of the cast part is almost the same. A barrier layer consisting of several sublayers was detected on the surface of B4C particles. Using electron diffraction in selected areas, it is found that these sublayers are composed of Al3BC crystals, TiB2 crystals, Si crystals, and coarse stick-shaped TiB2 particles. In addition, it is observed that Si plays an important role in the formation of a dense barrier layer. The barrier layer can limit B4C decomposition and improve B4C stability in the aluminum melt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.