Abstract

The thermodynamic state of nuclear matter as regards dependence on density and temperature is considered. Expressions for the association degree are derived describing the ratio of nuclear matter which is clustered to bound states. The problem of two nucleons imbedded in the surrounding nuclear matter is considered with the help of the Bethe-Goldstone equation for thermodynamic Green functions. The two-particle energy shift due to the effective nuclear matter hamiltonian is considered in a Hartree-Fock approximation, and a Mott density is obtained so that for densities of nuclear matter higher than the Mott density bound states cannot exist. With a simplified effective two-nucleon interaction the association degree is calculated as a function of the nucleon density and the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.