Abstract

In this paper, we introduce a novel meshfree framework for animating free surface viscous liquids with jet buckling effects, such as coiling and folding. Our method is based on Smoothed Particle Hydrodynamics (SPH) fluids and allows more realistic and complex viscous behaviors than the previous SPH frameworks in computer animation literature. The viscous liquid is modeled by a non-Newtonian fluid flow and the variable viscosity under shear stress is achieved using a viscosity model known as Cross model. We demonstrate the efficiency and stability of our framework in a wide variety of animations, including scenarios with arbitrary geometries and high resolution of SPH particles. The interaction of the viscous liquid with complex solid obstacles is performed using boundary particles. Our framework is able to deal with different inlet velocity profiles and geometries of the injector, as well as moving inlet jet along trajectories given by cubic Hermite splines. Moreover, the simulation speed is significantly accelerated by using Computer Unified Device Architecture (CUDA) computing platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.