Abstract

Coordination languages, as Reo, have emerged for the specification and implementation of interaction protocols among concurrent entities. In this paper, we propose a framework for generating partially-distributed, partially-centralized implementations of Reo connectors to improve 1) build-time compilation and 2) run-time throughput and parallelism. Our framework relies on the definition of a new formal product operator on constraint automata (Reo's formal semantics), which enables the formally correct distribution of disjoint parts of a coordination scheme over different machines according to several possible motivations (e.g., performance, privacy, QoS constraints, resource availability, network topology). First, we describe the design and a proof-of-concept implementation of our framework. Then, in a case study, we show and explain how a generated connector implementation can be executed in the Cloud and supports Big Data coordination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.