Abstract

BackgroundNeuropathic pain resulting from peripheral nerve lesions is a common medical condition, but current analgesics are often insufficient. The identification of key molecules involved in pathological pain processing is a prerequisite for the development of new analgesic drugs. Hyperexcitability of nociceptive DRG-neurons due to regulation of voltage-gated ion-channels is generally assumed to contribute strongly to neuropathic pain. There is increasing evidence, that T-type Ca2+-currents and in particular the Cav3.2 T-type-channel isoform play an important role in neuropathic pain, but experimental results are contradicting.PurposeTo clarify the role of T-type Ca2+-channels and in particular the Cav3.2 T-type-channel isoform in neuropathic pain.MethodsThe effect of partial sciatic nerve ligation (PNL) on pain behavior and the properties of T-type-currents in nociceptive DRG-neurons was tested in wild-type and Cav3.2-deficient mice.ResultsIn wild-type mice, PNL of the sciatic nerve caused neuropathic pain and an increase of T-type Ca2+-currents in capsaicin-responsive neurons, while capsaicin-unresponsive neurons were unaffected. Pharmacological experiments revealed that this upregulation was due to an increase of a Ni2+-resistant Ca2+-current component, inconsistent with Cav3.2 up-regulation. Moreover, following PNL Cav3.2-deficient mice showed neuropathic pain behavior and an increase of T-Type Ca2+-currents indistinguishable to that of PNL treated wild-type mice.ConclusionThese data suggest that PNL induces an upregulation of T-Type Ca2+-currents in capsaicin-responsive DRG-neurons mediated by an increase of a Ni2+-insensitive current component (possibly Cav3.1 or Cav3.3). These findings provide relevance for the development of target specific analgesic drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.