Abstract

A Ni catalyst supported on mono dispersed silica spheres, Ni/SiO2-Sph (SG), has been successfully synthesized by a sol–gel method. By comparing it with other Ni catalysts (supported on commercial silica and silica spheres) prepared by an impregnation method, we find that the size of Ni particles and their dispersion are closely related to performances of the catalysts in partial oxidation of methane (POM) into synthesis gas (CO + H2). Several means such as H2-TPR, TEM, and XRD are employed to characterize these catalysts. Although the catalyst Ni/SiO2-Sph (SG) in specific surface area is not large, the Ni particles are the smallest in size (3–5 nm) among the three catalysts, and are uniformly distributed, high dispersed over the silica surfaces, being not much changed as Ni loading. It is notable that the smaller size of the NiO particles is corresponding to the stronger NiO–SiO2 interactions. The catalyst Ni/SiO2-Sph (SG) shows the best catalytic performances and the longest lifetime among the three catalysts at the POM conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.