Abstract
Feature selection is a commonly utilized methodology in multi-label learning (MLL) for tackling the challenge of high-dimensional data. Accurate annotation of relevant labels is crucial for successful multi-label feature selection (MFS). Nevertheless, multi-label datasets frequently consist of ground-truth and noisy labels in real-world applications, giving rise to the partial multi-label learning (PML) problem. The inclusion of noisy labels complicates the task of conventional MFS methods in accurately identifying the optimal features subset in such datasets. To tackle this issue, we propose a novel partial multi-label feature selection method with low-rank sparse factorization and manifold learning, called PMFS-LRS. Specifically, we first decompose the candidate label matrix into two distinct components: a low-rank matrix referring to ground-truth labels and a sparse matrix referring to noisy labels. This decomposition allows PMFS-LRS to effectively distinguish noise labels from ground-truth labels, thereby mitigating the impact of noisy data. Then, the local label correlations are explored using a manifold learning framework to improve the label disambiguation performance. Finally, a l2,1-norm regularization is integrated into the objective function to facilitate effective feature selection. Comprehensive experiments conducted on both real-world and synthetic PML datasets demonstrate that PMFS-LRS is superior to several existing state-of-the-art MFS methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.