Abstract

Abstract The Sturm–Liouville operator on a star-shaped graph with different types of boundary conditions (Robin and Dirichlet) in different vertices is studied. Asymptotic formulas for the eigenvalues are derived and partial inverse problems are solved: we show that the potential on one edge can be uniquely determined by different parts of the spectrum if the potentials on the other edges are known. We provide a constructive method for the solution of the inverse problems, based on the Riesz basis property of some systems of vector functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.