Abstract

This paper addresses a partial inverse combinatorial optimization problem, called the partial inverse min–max spanning tree problem. For a given weighted graph G and a forest F of the graph, the problem is to modify weights at minimum cost so that a bottleneck (min–max) spanning tree of G contains the forest. In this paper, the modifications are measured by the weighted Manhattan distance. The main contribution is to present two algorithms to solve the problem in polynomial time. This result is considerable because the partial inverse minimum spanning tree problem, which is closely related to this problem, is proved to be NP-hard in the literature. Since both the algorithms have the same worse-case complexity, some computational experiments are reported to compare their running time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.