Abstract

AbstractPartial hydrogenation of vegetable oils is carried out to improve the chemical stability and raise the melting point to produce semi‐solid products such as margarine. Trans fatty acids formed during traditional hydrogenation have come under intense scrutiny with regard to human health. Here we report partial hydrogenation of soybean oil using a high performance integral‐asymmetric polyetherimide membrane sputtered with platinum to deliver hydrogen directly to or near the catalytic sites. Oil flows past the platinum‐coated “skin” side of the membrane while dissolved molecular and some atomic hydrogen is supplied from the highly porous substructure of the membrane. The membrane has a high hydrogen flux but is essentially impermeable to soybean oil. Hydrogenation using our metal/polymer catalytic composite membrane produced oil with only 4 wt.% total trans fatty acids and 14.5 wt.% C18:0 saturates at IV of 95 while the conventional Pt/C slurry reactor produced more than 10 wt.% TFA and the same amount of C18:0 saturates under similar conditions of temperature and pressure. Our concept requires hydrogen pressures of only about 65 psi and temperatures near 70 °C. The polymeric base membranes used here have been mass produced and can be packaged in spiral wound modules. The relatively mild reaction conditions and the direct pathway to produce useful membrane modules combine to make our concept promising for near‐term application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.