Abstract

Electrodialysis (ED) with ion-exchange membranes is a promising method for the extraction of phosphates from municipal and other wastewater in order to obtain cheap mineral fertilizers. Phosphorus is transported through an anion-exchange membrane (AEM) by anions of phosphoric acid. However, which phosphoric acid anions carry the phosphorus in the membrane and the boundary solution, that is, the mechanism of phosphorus transport, is not yet clear. Some authors report an unexpectedly low current efficiency of this process and high energy consumption. In this paper, we report the partial currents of H2PO4−, HPO42−, and PO43− through Neosepta AMX and Fujifilm AEM Type X membranes, as well as the partial currents of H2PO4− and H+ ions through a depleted diffusion layer of a 0.02 M NaH2PO4 feed solution measured as functions of the applied potential difference across the membrane under study. It was shown that the fraction of the current transported by anions through AEMs depend on the total current density/potential difference. This was due to the fact that the pH of the internal solution in the membrane increases with the growing current due to the increasing concentration polarization (a lower electrolyte concentration at the membrane surface leads to higher pH shift in the membrane). The HPO42− ions contributed to the charge transfer even when a low current passed through the membrane; with an increasing current, the contribution of the HPO42− ions grew, and when the current was about 2.5 ilimLev (ilimLev was the theoretical limiting current density), the PO43− ions started to carry the charge through the membrane. However, in the feed solution, the pH was 4.6 and only H2PO4− ions were present. When H2PO4− ions entered the membrane, a part of them transformed into doubly and triply charged anions; the H+ ions were released in this transformation and returned to the depleted diffusion layer. Thus, the phosphorus total flux, jP (equal to the sum of the fluxes of all phosphorus-bearing species) was limited by the H2PO4− transport from the bulk of feed solution to the membrane surface. The value of jP was close to ilimLev/F (F is the Faraday constant). A slight excess of jP over ilimLev/F was observed, which is due to the electroconvection and exaltation effects. The visualization showed that electroconvection in the studied systems was essentially weaker than in systems with strong electrolytes, such as NaCl.

Highlights

  • Ampholytes are substances which have chemical structures and electrical charges that depend on the pH of the medium due to their participation in protonation–deprotonation reactions

  • If the generation of H+ and OH− ions occurs at both membranes forming the desalination channel, the ampholyte cations, which are formed at the anion-exchange membrane (AEM) are delivered by the electric field to the cation-exchange membrane (CEM), where they are transformed into anions and return back to the AEM, where they change the charge sign again

  • Where i is the current density; T1CEM and T1AEM are the effective transport numbers of ion 1 in the cation-exchange membrane and anion-exchange membrane, respectively, which form the desalination compartment; C is the current salt concentration (NaCl or NaH2PO4) in tank (2); V is the volume of the solution in the desalination circuit; n is the number of desalination compartments (n = 1); CT and VT

Read more

Summary

Introduction

Ampholytes are substances which have chemical structures and electrical charges that depend on the pH of the medium due to their participation in protonation–deprotonation reactions. If the generation of H+ and OH− ions occurs at both membranes forming the desalination channel, the ampholyte cations, which are formed at the anion-exchange membrane (AEM) are delivered by the electric field to the cation-exchange membrane (CEM), where they are transformed into anions and return back to the AEM, where they change the charge sign again This phenomenon is called the circulation effect [21]. In our recent work [30], a similar mechanism was described, which explains a relatively high transport of ammonium ions (coions) through an AEM In this case, the positively charged ammonium ion enters the alkaline AEM medium and transforms into a molecular form, which is not affected by the Donnan exclusion. We focused on the determination of limiting current density using the tangent intersection method and the Cowan–Brown method

Total and Partial Current–Voltage Characteristics
Membrane and Solutions
Methods
Theory
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.