Abstract

The tempered representations of a real reductive Lie group G are naturally partitioned into series associated with conjugacy classes of Cartan subgroups H of G. We define partial Dirac cohomology, apply it for geometric construction of various models of these H–series representations, and show how this construction fits into the framework of geometric quantization and symplectic reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.