Abstract

The non-linear diffusion and the fourth order partial differential equations (PDEs) are used to decompose a turbulent flow field into coherent and incoherent fields. The methods are applied against the velocity fields for both forced and decaying homogeneous isotropic turbulence. The aim of this paper is to examine the ability of the partial differential equations in extracting coherent vortices from a turbulent flow field in the spatial domain without transforming the turbulent velocity field into frequency domain. The comparison against the standard methods such as the wavelet and Fourier decompositions are also considered. The three dimensional velocity fields with a resolution of 1283 are generated using the Lattice Boltzmann method (LBM) where the Taylor micro-scale Reynolds numbers are 72 and 29 for forced and decaying fields, respectively. Results show that the coherent field and the random incoherent part contribute to all scales in the inertial range. The two filtering methods approximately identify the coherent fields without any loss of the geometrical structure of the vortices. The statistical properties such as flatness, skewness and spectrum of the extracted fields (coherent and incoherent parts) are also investigated for each filtering method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.