Abstract

The recently introduced method of partial averaging is developed into a general formalism for computing simple Cartesian path integrals. Examples of its application to both harmonic and anharmonic systems are given. For harmonic systems, where analytical results can be derived, both imaginary and complex time evolution is discussed. For two representative anharmonic systems, Monte Carlo path integral simulations of the imaginary time propagator (statistical density matrix) are presented. Connections with other Cartesian path integral techniques are stressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.