Abstract
The amount of mass in small, dark matter clumps within galaxies (substructure) is an important test of cold dark matter. One approach to measuring the substructure mass fraction is to analyze the fluxes of images that have been strongly lensed by a galaxy. Flux ratios between images that are anomalous with respect to smooth (no substructure) models have previously suggested that there is a greater amount of substructure than found in dark matter simulations. One measure of anomalous flux ratios is parity dependence -- that the fluxes of different images of a source are perturbed differently. In this paper, we discuss parity dependence as a probe of dark matter substructure. We find that reproducing the observed parity dependence requires a significant alignment between concentrated dark matter clumps and images. The results may imply a larger fraction of mass in substructures than suggested by some dark matter simulations and that the observed parity dependence is unlikely to be reproduced by luminous satellites of lens galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.