Abstract

Local adaptation is a powerful mechanism to maintain genetic diversity in subdivided populations. It counteracts the homogenizing effect of gene flow because immigrants have an inferior fitness in the new habitat. This picture may be reversed in host populations where parasites influence the success of immigrating hosts. Here we report two experiments testing whether parasite abundance and genetic background influences the success of host migration among pools in a Daphnia magna metapopulation. In 22 natural populations of D. magna, immigrant hosts were found to be on average more successful when the resident populations experienced high prevalences of a local microsporidian parasite. We then determined whether this success is due to parasitism per se, or the genetic background of the parasites. In a common garden competition experiment, we found that parasites reduced the fitness of their local hosts relatively more than the fitness of allopatric host genotypes. Our experiments are consistent with theoretical predictions based on coevolutionary host-parasite models in metapopulations. A direct consequence of the observed mechanism is an elevated effective migration rate for the host in the metapopulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.