Abstract
Paraquat (PQ) causes selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, reproducing an important pathological feature of Parkinson disease. Oxidative stress, c-Jun N-terminal kinase activation, and alpha-synuclein aggregation are each induced by PQ, but details of the cell death mechanisms involved remain unclear. We have identified a Bak-dependent cell death mechanism that is required for PQ-induced neurotoxicity. PQ induced morphological and biochemical features that were consistent with apoptosis, including dose-dependent cytochrome c release, with subsequent caspase-3 and poly(ADP-ribose) polymerase cleavage. Changes in nuclear morphology and loss of viability were blocked by cycloheximide, caspase inhibitor, and Bcl-2 overexpression. Evaluation of Bcl-2 family members showed that PQ induced high levels of Bak, Bid, BNip3, and Noxa. Small interfering RNA-mediated knockdown of BNip3, Noxa, and Bak each protected cells from PQ, but Bax knockdown did not. Finally, we tested the sensitivity of Bak-deficient mice and found them to be resistant to PQ treatments that depleted tyrosine hydroxylase immuno-positive neurons in the substantia nigra pars compacta of wild-type mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.