Abstract

Parametrized motion planning algorithms \cite{CFW} have high degree of flexibility and universality, they can work under a variety of external conditions, which are viewed as parameters and form part of the input of the algorithm. In this paper we analyse the parameterized motion planning problem in the case of sphere bundles. Our main results provide upper and lower bounds for the parametrized topological complexity; the upper bounds typically involve sectional categories of the associated fibrations and the lower bounds are given in terms of characteristic classes and their properties. We explicitly compute the parametrized topological complexity in many examples and show that it may assume arbitrarily large values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.