Abstract
Searching for departures from general relativity (GR) in more than one post-Newtonian (PN) phasing coefficients, called a \emph{multi-parameter test}, is known to be ineffective given the sensitivity of the present generation of gravitational-wave (GW) detectors. Strong degeneracies in the parameter space make the outcome of the test uninformative. We argue that Principal Component Analysis (PCA) can remedy this problem by constructing certain linear combinations of the original PN parameters that are better constrained by gravitational-wave observations. By analyzing binary black hole events detected during the first and second observing runs (O1 and O2) of LIGO/Virgo, we show that the two dominant principal components can capture the essence of a multi-parameter test. Combining five binary black hole mergers during O1/O2, we find that the dominant linear combination of the PN coefficients obtained from PCA is consistent with GR within the 0.38 standard deviation of the posterior distribution. Furthermore, using a set of simulated \emph{non-GR} signals in the three-detector LIGO-Virgo network with designed sensitivities, we find that the method is capable of excluding GR with high confidence as well as recovering the injected values of the non-GR parameters with good precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.