Abstract

Nonlinear transverse vibrations of axially moving beams with multiple cracks is handled studied. Assuming that the beam moves with mean velocity having harmonically variation, influence of the edge crack on the moving continua are investigated in this study. Due to existence of the crack in the transverse direction, the healthily beam is divided into parts. The translational and rotational springs are replaced between these parts so that high stressed regions around the crack tips are redefined with the springs' energies. Thus, the problem is converted to an axially moving spring-beam system. The equations of motion and its corresponding conditions are obtained by means of the Hamilton Principle. In numerical analysis, the natural frequencies and responses of the spring-beam system are investigated for principal parametric resonance in detail. Some important results are obtained; the natural frequencies decreases with increasing crack depth. In case of the beam travelling with high velocities, the effects of crack's depth on natural frequencies seems to be vanished.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.