Abstract

A comprehensive parametric study is presented on the vibration and the energy harvesting performance of a low-frequency zigzag energy harvester. The zigzag microelectromechanical systems (MEMS) vibrational energy harvesters have low natural frequencies which match the low-frequency range of ambient vibrations. The harvesters can, therefore, be designed to resonate with ambient excitation. The power produced by energy harvesters at resonance is orders of magnitude larger than off resonance power. The paper aims at providing an easy-to-use, comprehensive tool for designing the harvesters for different applications. The two key characteristics of the vibrational energy harvesters are their resonance frequency and their power transfer function. We formulate both vibrations and power production of the zigzag MEMS harvesters in nondimensional equations. The paper advances the state of the art in MEMS energy harvesting research area by identifying the dimensionless parameters governing mechanical vibrations and energy generation. We also investigate how the resonant frequency and the maximum power vary with each of the corresponding dimensionless parameters. The graphs summarize the parametric studies and provide sufficient tools for design of zigzag harvesters. The natural frequencies are related to six dimensionless variables, and the power transfer functions depend on 12 dimensionless parameters. <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX"> $\hfill$</tex></formula> [2010-0298]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.