Abstract
In this paper, a parametric study of conventional Uniplanar Compact Photonic Band Gap (UC-PBG) structures, with different dimensions, is investigated. The studied structure operates as an Artificial Magnetic Conductor (AMC) in which the performance is mainly characterized by the resonant frequency and bandwidth. Simulation and numerical analysis have been carried out using CST Microwave Studio software, which is based on Finite Difference Time Domain (FDTD), and Ansoft HFSS which is based on Finite Element Method (FEM). Results show that different dimensions affect the AMC\'s performance. The increase in the length and width of the UC-PBG slot will result in lower resonant frequencies and bandwidth degradation, while the frequency band position and the bandwidth will increase when the branch width have been increased. Furthermore, a prototype of a microstrip line proximity-fed to a fractal patch antenna on a UC-PBG substrate is designed and simulated. Computed results show that the antenna mounted on the UC-PBG substrate has over 9.2% wider impedance bandwidth than the same antenna etched on a grounded dielectric slab with same the same characteristics, due to in-phase reflection phase of UC-PBG structure. Compared with the reference antenna at 7.2 GHz, the back lobe is reduced by 7.86 dB in E plane and 7.68 dB in H plane. Cross-polarization level remains below -10 dB in both E and H planes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.