Abstract

Laser energy absorption on the keyhole wall is decisive for the thermodynamic behavior and the resultant weld properties in the high-power laser beam welding process. However, its highly transient nature on a microsecond scale makes the quantitative analysis challenging. In this paper, the influence of the relevant welding parameters on laser energy absorption is studied statistically by utilizing multiphysical modeling, in which the three-dimensional transient keyhole dynamics and thermo-fluid flow are calculated. A dynamic mesh adaption technique and a localized level-set-based ray-tracing method are employed to improve the model accuracy further. The results show that the focus position has a remarkable effect on the time-averaged laser absorption, and in contrast, the laser energy distribution regime is only slightly influenced by the welding speed in the studied parameter range (1.5–3.0 m/min). The absorption ratio of the laser energy on the keyhole front wall decreases with increasing welding speed and increases with upward-moving focus positions. The comparison between the calculated results and the experimental measurements ensures the validity of the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.