Abstract
Large-scale hydrogen generation is needed to satisfy both existing commercial demands and the realization of a hydrogen economy. The hybrid sulfur cycle has the potential to meet this goal without the use of fossil fuels. The ability to model and predict how the electrolyzer step of the cycle is affected by independent and interdependent variables is vital to maximizing the efficiency of the overall cycle. Our parametric study of the SO2-depolarized electrolyzer, representing one half of the overall reaction cycle, has identified desirable conditions and will help guide further development for operation that will achieve the benchmarks for economic feasibility. We discuss the interactions among the inlet flow rates, applied current, and cell temperature and pressure, on the resulting cell voltage and acid concentration in the liquid product stream. For example, we find that using a sulfonated polybenzimidazole (s-PBI) membrane and a platinum catalyst, a constant current density of either 0.5 A cm−2, 0.75 A cm−2, or 1 A cm−2 with an acid concentration of 65 wt% H2SO4 can be produced at a cell voltage of 0.59 V, 0.63 V, and 0.67 V, respectively, by maintaining a cell temperature of 130 °C, a pressure of 2 bar, and a water-to-SO2 stoichiometry of 2.77. Finally, we discuss directions for future research based on the findings in this manuscript.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.