Abstract

It has previously been shown by different investigators that the excitable membrane shows a resonant sensitivity to periodic external perturbations, but its Q-factor is, as a rule, low. The present paper analyses the possible ways of increasing the membrane Q, using a model of the Hodgkin-Huxley type. It is found, in particular, that it can be increased considerably by modulating periodically the membrane capacitance or the activation and inactivation rate constants of ionic channels, with a frequency of about 2 fo (fo being the fundamental frequency of damped oscillations in the membrane), the extent of modulation not exceeding the critical value 2/Q. In this case, a significant parametric amplification of the membrane current takes place. If the modulation coefficient is above 2/Q, the membrane can display a parametric resonance that causes stable self-oscillations in the potential with a frequency approximately fo. The conditions for the realization of parametric amplification and resonance in biological membranes are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.