Abstract
In this work, a novel method for on-line identification of non-linear systems is proposed based upon the optimisation methodology with Hopfield neural networks. The original Hopfield model is adapted so that the weights of the resulting network are time-varying. A rigorous analytical study proves that, under mild assumptions, the estimations provided by the method converge to the actual parameter values in the case of constant parameters, or to a bounded neighbourhood of the parameters when these are time-varying. Time-varying parameters, often appearing in mechanical systems, are dealt with by the neural estimator in a more natural way than by least squares techniques. Both sudden and slow continuous variations are considered. Besides, in contrast to the gradient method, the neural estimator does not critically depend on the adjustment of the gain. The proposed method is applied to the identification of a robotic system with a flexible link. A reduced output prediction error and an accurate estimation of parameters are observed in simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.