Abstract
Recent research has shown that circular hollow section (CHS) joints may exhibit non-rigid behavior under axial load or bending. The non-rigid behavior significantly affects the mechanical performance of structures. This paper is concerned with the parametric formulae for predicting axial stiffness of CHS X-joints while braces are in tension. The factors influencing the axial stiffness of CHS X-joints under brace axial tension are investigated, including the joint geometric parameters, the axial force of the chord, and bending moments of braces in two directions, etc. Effects of various parameters on axial stiffness of CHS X-joints are examined by systematic single-parameter nonlinear analysis using shell finite element methods. The analysis is implemented in a finite element code, ANSYS. The observed trends form the basis of the formulae for calculating the joint axial stiffness under brace axial tension by multivariate regression technique. In order to simplify the formulae, two non-dimensional variables are introduced. The proposed formulae can be used to calculate the joint axial stiffness in the design of single-layer steel tubular structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.