Abstract
The recently incorporated parametric mapping capability into the finite-volume direct averaging micromechanics (FVDAM) theory has produced a paradigm shift in the theory’s development. The use of quadrilateral subvolumes made possible by the mapping facilitates efficient modeling of microstructures with arbitrarily shaped heterogeneities, and eliminates artificial stress concentrations produced by the rectangular subvolumes employed in the standard version. Herein, the parametric FVDAM theory is extended to the inelastic domain by implementing additional formulation required to accommodate plastic and thermal loading. Two different approaches of implementing plasticity have been investigated. The first approach is based on the treatment employed in previous versions of the theory wherein plastic strain fields are represented by a series expansion in Legendre polynomials. The second approach is based on direct surface-averaging of plastic strains calculated at a number of collocation points along the quadrilateral subvolumes’ surfaces, and offers substantial simplification in the parametric finite-volume theory’s elastic–plastic framework. Moreover, substantial reductions in execution times without loss of accuracy are realized due to the elimination of redundant plastic strain calculations in the subvolumes’ interiors employed in the evaluation of the Legendre polynomial coefficients. Numerical studies demonstrate the advantages of the parametric FVDAM theory relative to the standard version, together with new results that highlight its modeling capabilities vis-a-vis an emerging class of periodic lamellar materials with wavy microstructures and the thus-far undocumented architectural effects amplified by plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.