Abstract

This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

Highlights

  • In recent years, stereovision has become a very attractive sensing technique for obtaining 3D information [1,2,3]

  • This paper presents an efficient hardware implementation of a parametrisable stereovision SoC

  • Measurements distributed throughout the whole image, eliminating the limitation on the maximum number of stereo correspondence points as it is commonly considered in many applications

Read more

Summary

Introduction

Stereovision has become a very attractive sensing technique for obtaining 3D information [1,2,3]. Recovering depth via triangulation is present in many computer vision systems. Several authors have attempted to imitate the human vision in different electronic systems devoted to stereo vision [2]. Stereovision systems can provide accurate real-time data in different applications. A rough division may be done to differentiate the recovery of 3D measurements using triangulation from different points of view. Typical setups include two or three cameras (ideally coplanar) not too far apart to facilitate the overlap of their images to provide an accurate 3D measurement. Other systems try to obtain a broader 3D measurement from a large covered area, so the cameras are placed throughout a room with a large field of view (for example, for object location in sports video sequences). The SoC implementation is more suitable to coplanar (compact) stereovision systems. In other stereovision systems in which optical axes intersect, a previous rectification process is needed

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.