Abstract

We study the parametric amplification of electromagnetically induced transparency-assisted Rydberg six- and eight-wave mixing signals through a cascaded nonlinear optical process in a hot rubidium atomic ensemble both theoretically and experimentally. The shift of the resonant frequency (induced by the Rydberg–Rydberg interaction) of parametrically amplified six-wave mixing signal is observed. Moreover, the interplays between the dressing effects and Rydberg–Rydberg interactions in parametrically amplified multiwave mixing signals are investigated. The linear amplification of Rydberg multiwave mixing processes with multichannel nature acts against the suppression caused by Rydberg–Rydberg interaction and dressing effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.