Abstract

The aim of this paper is to optimize the working parameters of the arc-shaped nail-tooth roller-type recovery machine for sowing layer residual film. Firstly, the tooth roller device of the residual film recovery machine is designed, and the main working parameters affecting the operation of the machine and the value range of each parameter are determined through the analysis of the operation process. Secondly, virtual simulation technology is used to establish a virtual simulation model of the interaction process between the tooth roller device and soil. At the same time, taking the soil-hilling quantity as the index, we build a quadratic regression mathematical model with three factors—the forward speed, rotation speed, and working depth—using the Box–Behnken method. Consequently, the analysis of the simulation results show that the order of the most significant factors is working depth, rotation speed, and forward speed. The optimal combination of working parameters are as follows: a forward speed of 4.5 km/h, a rotation speed of 43.2 r/min, and a working depth of 100.0 mm. Meanwhile, the predicted value of the soil-hilling quantity is 23.1 kg. Finally, we carried out field tests using the optimal combination parameters; the results show that the normal residual film collection rate is 66.8%, the soil-hilling quantity is 24.2 kg, and the relative error between the test value and the predicted value is 4.8%. This indicates that the devised DEM simulation model can be used to predict the operational performance of the tooth roller device in the working process. This study provides a reference that can be used in the planning and boundary enhancement of agricultural machinery and equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.