Abstract
The performance of photovoltaic (PV) cell is affected by the model structure and corresponding parameters. However, these parameters are adjustable and variable, which play an available role in regarding to the efficiency and effectiveness of PV generation. Due to strong non-linear characteristics, existing PV model parameters identification methods cannot easily obtain accurate solutions. To tackle this, this paper proposes an adaptive differential evolution algorithm with the dynamic opposite learning strategy (DOL), named DOLADE. In DOLADE, the opposite learning method expands the current elite population and the population of poor performance, improving the particles’ exploration capability. In the process of particles work, the searching area of particles is adjusting dynamically so that the particles’ exploitation capability is enhanced. The experimental data of different types of PV are tested, respectively. Three PV models are used to verify the new strategy’s accuracy and effectiveness. The proposed DOLADE is compared with several general advanced algorithms, and comprehensive experimental results are demonstrated. The results illustrate that DOLADE well extracts optimal parameters for each PV cell model and brought great competition in terms of accuracy, reliability, and computational efficiency in solving the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.