Abstract

This study investigated the effects of cooling rate during solidification, heat treatment, and the addition of Mn and Sr on the formation of intermetallic phases in Al–11Si–2.5Cu–Mg alloys. Microstructures were monitored using optical microscopy and EPMA techniques. The results reveal that the volume fractions of intermetallic phases are generally much lower in the furnace-cooled samples than in the air-cooled ones due to the dissolution of the β-AlFeSi and Al 2Cu phases during slow cooling at critical dissolution temperatures. Strontium additions increased the volume fraction of the Al 2Cu phase in the as-cast conditions at low and high cooling rates, as well as at varying ranges of Mn levels. Platelets of the β-AlFeSi phase were to be observed in the microstructure of the as-cast air-cooled samples with a DAS of 40 μm at both Mn levels, while none of these particles were to be found in the furnace-cooled samples with a DAS of 120 μm. Sludge particles were observed in almost all of the air-cooled alloys with sludge factors of between 1.4 and 1.9. These particles, however, were not observed in the furnace-cooled alloys with similar sludge factors. Solution heat treatment coarsens the Si particles in the non-modified alloys under both sets of cooling conditions studied. In the Sr-modified alloys, solution treatment has varied effects depending on the cooling rate and the level of Mn present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.