Abstract
The uncertainty principle is one of the fundamental features of quantum mechanics and plays an essential role in quantum information theory. We study uncertainty relations based on variance for arbitrary finite N quantum observables. We establish a series of parameterized uncertainty relations in terms of the parameterized norm inequalities, which improve the exiting variance-based uncertainty relations. The lower bounds of our uncertainty inequalities are non-zero unless the measured state is a common eigenvector of all the observables. Detailed examples are provided to illustrate the tightness of our uncertainty relations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.