Abstract

AbstractWe investigate the parameterized computational complexity of the satisfiability problem for modal logic and attempt to pinpoint relevant structural parameters which cause the problem’s combinatorial explosion, beyond the number of propositional variables v. To this end we study the modality depth, a natural measure which has appeared in the literature, and show that, even though modal satisfiability parameterized by v and the modality depth is FPT, the running time’s dependence on the parameters is a tower of exponentials (unless P=NP). To overcome this limitation we propose possible alternative parameters, namely diamond dimension and modal width. We show fixed-parameter tractability results using these measures where the exponential dependence on the parameters is much milder (doubly and singly exponential respectively) than in the case of modality depth thus leading to FPT algorithms for modal satisfiability with much more reasonable running times. We also give lower bound arguments which prove that our algorithms cannot be improved significantly unless the Exponential Time Hypothesis fails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.