Abstract

Hydrological models play vital roles in management of water resources. However, the calibration of the hydrological models is a large challenge because of the uncertainty involved in the large number of parameters. In this study, four uncertainty analysis methods, including Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), Particle Swarm Optimization (PSO), and Sequential Uncertainty Fitting (SUFI-2), were employed to perform parameter uncertainty analysis of streamflow simulation in the Srepok River Catchment by using the Soil and Water Assessment Tool (SWAT) model. The four methods were compared in terms of the model prediction uncertainty, the model performance, and the computational efficiency. The results showed that the SUFI-2 method has the advantages in the model calibration and uncertainty analysis. This technique could be run with the smallest of simulation runs to achieve good prediction uncertainty bands and model performance. This technique could be run with the smallest of simulation runs to achieve good prediction uncertainty bands and model performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.