Abstract
Trees can be conveniently compressed with linear straight-line context-free tree grammars. Such grammars generalize straight-line context-free string grammars which are widely used in the development of algorithms that execute directly on compressed structures (without prior decompression). It is shown that every linear straight-line context-free tree grammar can be transformed in polynomial time into a monadic (and linear) one. A tree grammar is monadic if each nonterminal uses at most one context parameter. Based on this result, a polynomial time algorithm is presented for testing whether a given nondeterministic tree automaton with sibling constraints accepts a tree given by a linear straight-line context-free tree grammar. It is shown that if tree grammars are nondeterministic or non-linear, then reducing their numbers of parameters cannot be done without an exponential blow-up in grammar size.KeywordsPolynomial TimePolynomial Time AlgorithmMaximal RankTree AutomatonContext ParameterThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.